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Forecasting is everywhere…





Forecasting is not always easy…
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Forecasting can shape the future itself…

More than 4 million people have signed a petition calling for a 
second EU referendum...



How should the accuracy of forecasts be quantified and promoted?

Scoring rules 

 assume that forecasts can be expressed by distributions of
probabilities over future events

 measure the accuracy of forecasts on the basis of what event actually
materializes

Accurate forecasts are extremely valuable



There is a lively debate on which strictly proper scoring rule should be
preferred, and currently none of them is broadly recognized as the
“best method” to evaluate forecasting accuracy

(Neutrality)

(Locality)

(Proportionality)

The most popular models are the following:

Note: each prediction (x) is modelled as a probability distribution over m mutually exclusive
and exhaustive hypotheses, the hypothesis which actually materializes is indicated with “o”



Scoring rules are commonly used for eliciting subjective probabilities as well as for

assessing and rewarding laypeople and experts for their forecasts in a variety of areas

(e.g., strategic games, operations research, …)

Payoff functions 
provided by some scoring rule

(“truth serums”)

Subjective 
Probabilities

Forecasting 
problems

Subjective
Probabilities

Evaluation of predictive abilities 
according to some scoring rule

Scoring rules are also employed as learning devices for professional forecasters

(e.g., meteorologists)



But … 

- different scoring rules induce significantly different distribution of forecasts

(Palfrey & Wang, 2009)

- evaluations based on different scoring rules can be in contradiction with each other

(Bickel, 2007, and Merkle & Steyvers, 2013)



Which scoring rule best captures 
intuitive assessments of forecasting accuracy?



We developed a new experimental paradigm for eliciting ordinal
judgments (ex-post evaluations) of accuracy concerning pairs of
forecasts for which various combinations of associations /dissociations
between Q, L, and S are obtained

This allowed us:

- to map the overlap between these models

- to identify which of them is descriptively most accurate

- to find possible situations in which none of them matches people’s
intuitive assessments of forecasting accuracy



Stimuli (general idea)

Forecasting scenarios consisting of pairs of predictions, x and y, concerning five

mutually exclusive and exhaustive hypotheses, h1, …, h5 (Nh= 5), and an observed

outcome ho, that specified which of the five hypotheses at issue came true

More specifically, each hypothesis hi was introduced to participants as referring

to the victory of team i in a hypothetical tournament to be played among five

teams, while the outcome indicated what team in the end won the tournament



Example of scenario

prediction x
proved to be more accurate than 

prediction y

prediction y
proved to be more accurate than 

prediction x

prediction x and y
proved to be 

equally accurate



Classification of the scenarios

Dominance: scenarios in which Q, L, and S all agree in evaluating one prediction as

better than the other (we will denote this with x >LSQ [<LSQ] y)

Indifference: scenarios in which Q, L, and S all agree in evaluating the two

predictions as equally good (i.e., x =LSQ y)

Dissociation: scenarios in which Q, L, and S do not all agree in evaluating which of the

two predictions is better (e.g., x >LS y and x <Q y)



DOMINANCE

INDIFFERENCES
There is a transparent dominance of x over y iff prx(ho) > pry(ho) and prx(hi) ≤ pry(hi) for all i ≠ o

There is a permuted dominance of x over y iff prx(ho) > pry(ho) and there exists a permutation
π of the set of indices i ≠ o such that prx(hi) ≤ pry(hπi) for all i ≠ o

There is a contingent dominance of x over y iff x >QLS y but, in principle, there could exist a
proper scoring rule M for which the opposite holds (i.e, x <M y)
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DOMINANCES

INDIFFERENCE

There is a transparent indifference between x and y iff prx(hi) = pry(hi) for all i

There is a permuted indifference between x and y iff prx(ho) = pry(ho) and there exists a
permutation π of the set of indices i ≠ o such that prx(hi) = pry(hπi) for all i ≠ o

There is a contingent indifference between x and y iff x =QLS y but, in principle, there could
exist a proper scoring rule M for which x ≠M y



DOUBLE DISSOCIATION

We considered only these three subclasses of dissociation (among the twelve that are

theoretically possible) because:

a) we did not want the task to be too long and, since these subclasses involve a rank

reversal, they appear to be particularly relevant

b) with five hypotheses and probabilities that are multiples of 10%, some subclasses of

dissociation are empty



Filtering of redundant scenarios

A completely random sampling from the various subclasses would have easily ended up in

many redundant scenarios, i.e., scenarios that are de facto equivalent and can be

obtained from each other by means of one or a combination of the following operations:
- a swap between columns x and y (case a below)
- a swap of the true hypothesis row, prx(ho), 1, pry(ho), with any other row (case b)
- a swap of two or more values pr(hi) with i ≠ o within column x or y (case c)



Number of scenarios in each subclass of stimuli that are obtained with our experimental paradigm, 
before (N) and after (Nf) the filtering procedure, respectively



EXPERIMENT 1

Participants

30 students from University of Trento (40% females; Mage= 24 years)

None of them had ever heard about scoring rules

They received a carbonium pen drive (€10 in value) for their participation

Procedure and Stimuli

For each participant, we randomly drew (without replacement) 30 scenarios:

- 6 (2 transparent, 2 permuted, and 2 contingent) dominance scenarios: 
x >Q,L,S [<Q,L,S] y.

- 6 (2 transparent, 2 permuted, and 2 contingent) indifference scenarios: 

x =Q,L,S y.

- 6 scenarios for each of the following double dissociations:
x >Q [<Q] y and x <L,S [>L,S] y.  (Q vs. LS)

x >L [<L] y and x <Q,S [>Q,S] y;  (L vs. QS) 

x >S [<S] y and x <Q,L [>Q,L] y;  (S vs. QL)



EXPERIMENT 2

Participants

30 new students from University of Trento (43% females; Mage= 25 years)

None of them had ever heard about scoring rules

They received a carbonium pen drive (€10 in value) for their participation

Stimuli

- 3 (1 transparent, 1 permuted, and 1 contingent) dominance scenarios: 
x >Q,L,S [<Q,L,S] y

- 6 scenarios for the following double dissociation:
x >L,S [<L,S] y and x =Q y

- 9 scenarios for each of the following double dissociations:
x >Q [<Q] y and x =L,S y

x >Q,S [<Q,S] y and x =L y

- 3 scenarios (i.e., all) for the (only possible) triple dissociation:
x =Q y; x >L [<L] y and x <S [>S] y



Number of scenarios in each subclass of stimuli that are obtained with our experimental paradigm, 
before (N) and after (Nf) the filtering procedure, respectively



To have a measure of the reliability of participants’ judgments and reduce the

impact of possible random answers, we presented each scenario twice

(counterbalancing the left/right position of the two predictions)

Therefore, each participant was presented with two blocks of 30 scenarios that

were identical except for the reversed left/right position of the two predictions

in the corresponding scenarios and the order of scenarios (which was randomized)



Results…



EXP 1 Average response times for consistent and inconsistent judgments, and 
percentages of inconsistent judgments for each class of scenarios



EXP 2 Average response times for consistent and inconsistent judgments, and 
percentages of inconsistent judgments for each class of scenarios



Average agreement (in %) between (consistent) judgments and Q, L, and S
for each class of scenarios

EXP 1



Average agreement (in %) between (consistent) judgments and Q, L, and S
for each class of scenarios

EXP 2



These results of these experiments might have 

interesting implications for

the development of new / 

the refinement of the existing

formal models 

the development of 
“tailored scoring rules”

that are effective in improving
forecasting accuracy in various contexts 

and for different experts

CONCLUSION

Overall, L is the model that best captures intuitive assessments of forecasting accuracy
However, L is not perfect and its descriptive limitations/shortcomings are systematic



To generalize our experimental procedure to include more complex forecasting

scenarios in which:

- multiple forecasts have to be evaluated together

- under-and over-prediction errors are not equally bad

- the rank order of the forecasts matters

To employ different participants (e.g., experts or even “superforecasters”

(provided they exist :-)

Suggestions for future research



Thanks for your attention! 


