Judging forecasting accuracy: How human intuitions can help improving formal models

Katya Tentori

CIMe Conversity of Trento

In collaboration with Crupi, V. & Passerini, A.

e do no

Ancona Sept 13, 2018

Forecasting is everywhere...

Forecasting is not always easy...

June 23, 2016

November 8, 2016

Forecasting can shape the future itself...

NOMERENDENT News INFact Election 2017 Voices Culture Business Indy/Life Tech News > UK > UK Politics Brexit research suggests 1.2 million Leave voters regret their choice in reversal that could change result The research suggests that if a second referendum were held, the vote would be much closer

"I'm shocked that we voted for Leave, I didn't think that was going to happen," he said. "I didn't think my vote was going to matter too much because I thought we were just going to remain."

More than 4 million people have signed a petition calling for a second EU referendum...

Accurate forecasts are extremely valuable

How should the accuracy of forecasts be quantified and promoted?

Scoring rules

- assume that forecasts can be expressed by distributions of probabilities over future events
- measure the accuracy of forecasts on the basis of what event actually materializes

There is a lively debate on which *strictly proper* scoring rule should be preferred, and currently none of them is broadly recognized as the "best method" to evaluate forecasting accuracy

The most popular models are the following:

$$S_o^{Q}(x) = 2x_o - \sum_{i=1}^{m} x_i^2$$
 [-1, 1] (Neutrality)

$$S_o^L(x) = \log x_o$$
 [- ∞ , 0] (Locality)

$$S_o^{S}(x) = \frac{x_o}{\sqrt{\sum_{i=1}^m x_i^2}} \qquad [0,1] \qquad (Proportionality)$$

Note: each prediction (x) is modelled as a probability distribution over m mutually exclusive and exhaustive hypotheses, the hypothesis which actually materializes is indicated with "o"

Scoring rules are commonly used for **eliciting** subjective probabilities as well as for **assessing** and **rewarding** laypeople and experts for their forecasts in a variety of areas (e.g., strategic games, operations research, ...)

Scoring rules are also employed as **learning devices** for professional forecasters (e.g., meteorologists)

But ...

- different scoring rules induce significantly different distribution of forecasts (Palfrey & Wang, 2009)
- evaluations based on different scoring rules can be in contradiction with each other (Bickel, 2007, and Merkle & Steyvers, 2013)

Which scoring rule best captures intuitive assessments of forecasting accuracy?

We developed a **new experimental paradigm** for eliciting ordinal judgments (ex-post evaluations) of accuracy concerning pairs of forecasts for which various combinations of associations /dissociations between Q, L, and S are obtained

This allowed us:

- to map the overlap between these models
- to identify which of them is descriptively most accurate
- to find possible situations in which none of them matches people's intuitive assessments of forecasting accuracy

Stimuli (general idea)

Forecasting scenarios consisting of pairs of predictions, x and y, concerning five mutually exclusive and exhaustive hypotheses, h_1 , ..., h_5 (N_h = 5), and an observed outcome h_o , that specified which of the five hypotheses at issue came true More specifically, **each hypothesis** h_i was introduced to participants as referring to the **victory of team** *i* in a hypothetical tournament to be played among five teams, while the outcome indicated what team in the end won the tournament

Example of scenario

	×	Outcome	у	
h_1	20	1	10	h_1
h ₂	0	0	40	h ₂
h ₃	80	0	0	h ₃
h_4	0	0	50	h_4
h_5	0	0	0	h_5

prediction x	prediction x and y	prediction y
proved to be more accurate than	proved to be	proved to be more accurate than
prediction y	equally accurate	prediction x

Classification of the scenarios

Dominance: scenarios in which Q, L, and S all agree in evaluating one prediction as better than the other (we will denote this with $x >_{LSQ} [<_{LSQ}] y$)

Indifference: scenarios in which Q, L, and S all agree in evaluating the two predictions as equally good (i.e., $x =_{LSQ} y$)

Dissociation: scenarios in which Q, L, and S do not all agree in evaluating which of the two predictions is better (e.g., $x >_{LS} y$ and $x <_{Q} y$)

DOMINANCE

	Normative							Non-Normative				
	Transparent					Permuted		Contingent (on Q, L, and S			and 5)	
	×	Outcon	ne	y		×	Outcome	y	×	Outom	e	У
h 1	40	1	>	30		40	1 >	30	40	1	>	30
h2	30	0		40		30	0	0	30	0	<u><</u>	60
13	0	0	≤	0		0	< 0	40	0	0		0
h4	30	0		30		30	0	0	30	0	>	10
15	0	0		0		0	0	30	0	0		0

There is a transparent dominance of x over y iff $pr_x(h_o) > pr_y(h_o)$ and $pr_x(h_i) \le pr_y(h_i)$ for all $i \ne o$

There is a **permuted dominance** of x over y iff $pr_x(h_o) > pr_y(h_o)$ and there exists a permutation π of the set of indices $i \neq o$ such that $pr_x(h_i) \leq pr_y(h_{\pi i})$ for all $i \neq o$

There is a contingent dominance of x over y iff $x >_{QLS} y$ but, in principle, there could exist a proper scoring rule M for which the opposite holds (i.e., $x <_M y$)

There is a **transparent indifference** between x and y iff $pr_x(h_i) = pr_y(h_i)$ for all i

There is a **permuted indifference** between x and y iff $pr_x(h_o) = pr_y(h_o)$ and there exists a permutation π of the set of indices $i \neq o$ such that $pr_x(h_i) = pr_y(h_{\pi i})$ for all $i \neq o$

There is a contingent indifference between x and y iff $x =_{QLS} y$ but, in principle, there could exist a proper scoring rule M for which $x \neq_M y$

	Normative						Non-Normative				
	Transparent				Permuted			Contingent (on Q, L, and S)			
	×	Outcome	у	×	Outcome	y	×	Outcome	У		
h_1	40	1	40	40	1	40	40	1	40		
h ₂	30	0	30	30	0	0	30	0	40		
h3	0	0	0	0	0	30	0	0	10		
h ₄	30	0	30	30	0	0	30	0	10		
hs	0	0	0	0	0	30	0	0	0		

INDIFFERENCE

DOUBLE DISSOCIATION

		Q vs. LS			L vs. QS				S vs. QL			
	×	Outcome	Y		×	Outcome	У	x		Outcome	У	
h_1	20	1	30		50	1	40	50)	1	60	
h ₂	40	0	70		50	0	20	20)	0	40	
h3	30	0	0		0	0	20	20)	0	0	
h ₄	10	0	0		0	0	10	10)	0	0	
h5	0	0	0	_	0	0	10	0		0	0	

We considered only these three subclasses of dissociation (among the twelve that are theoretically possible) because:

- a) we did not want the task to be too long and, since these subclasses involve a **rank reversal**, they appear to be particularly relevant
- b) with five hypotheses and probabilities that are multiples of 10%, some subclasses of dissociation are empty

Filtering of redundant scenarios

A completely random sampling from the various subclasses would have easily ended up in many **redundant scenarios**, i.e., scenarios that are *de facto* equivalent and can be obtained from each other by means of one or a combination of the following operations:

- a swap between columns x and y (case a below)
- a swap of the true hypothesis row, $pr_x(h_o)$, 1, $pr_y(h_o)$, with any other row (case b)
- a swap of two or more values $pr(h_i)$ with $i \neq o$ within column x or y (case c)

		Target	
	×	Outcome	Y
h_1	20	1	10
h ₂	0	0	40
h ₃	80	0	0
h ₄	0	0	50
h ₅	0	0	0

		۵			b			c			
	×	Outcome	У	×	Outcome	У	×	Outcome	у		
h_1	10	1	20	0	0	50	20	1	10		
h ₂	40	0	0	0	0	40	0	0	40		
h ₃	0	0	80	80	0	0	0	0	0		
h 4	50	0	0	20	1	10	80	0	50		
h 5	0	0	0	0	0	0	0	0	0		

					N		N_{f}	%
Dominance	Transparent Permuted	x	ς > _{Q,L,S} [< _{Q,L,S}] ;	427,570 1,549,380	}	1728	.3870	
	Contingent		2,028,400		1904	.4264		
Indifference	Transparent Permuted		$x =_{Q,L,S} y$	5,005 66,870	}	94	.0211	
	Contingent			15,440		14	.0031	
		$x <_{Q} [>_{Q}] y$		$x >_{L,S} [<_{L,S}] y$	63,040		73	.0163
	Q vs. LS	$x =_{\mathcal{Q}} y$		$x >_{\mathrm{L,S}} [<_{L,S}] y$	15,680		14	.0031
		$x >_{\mathcal{Q}} [<_{\mathcal{Q}}] y$		$x =_{L,S} y$	377,960		246	.0551
	L vs. QS	$x \leq_L [>_L] y$		$x >_{Q,S} [<_{Q,S}] y$	3,200		12	.0027
Double Dissociation		$x =_L y$		$x >_{Q,S} [<_{Q,S}] y$	453,500		371	.0831
		$x >_L [<_L] y$		$x =_{Q,S} y$			0	
	-	$x \leq_{S} [\geq_{S}] y$		$x >_{Q,L} [<_{Q,L}] y$	2,360		6	.0013
	S vs. QL	$x =_{S} y$		$x >_{Q,L} [<_{Q,L}] y$	0		0	
		$x >_{S} [<_{S}] y$		$x =_{Q,L} y$	0		0	
		$x =_{Q} y$	$x >_L [<_L] y$	$x \leq_{S} [\geq_{S}] y$	1,600		3	.0007
Triple Dissociation	Q vs. L vs. S	$x >_{\mathcal{Q}} [<_{\mathcal{Q}}] y$	$x =_L y$	$x \leq_{S} [\geq_{S}] y$	0		0	
Dissounded		$x >_{\mathcal{Q}} [<_{\mathcal{Q}}] y$	$x \leq_L [>_L] y$	$x =_{S} y$	0		0	
-								

Number of scenarios in each subclass of stimuli that are obtained with our experimental paradigm, before (N) and after (N_f) the filtering procedure, respectively

5,010,005 4465 1

EXPERIMENT 1

Participants

30 students from University of Trento (40% females; *M*_{age}= 24 years) None of them had ever heard about scoring rules They received a carbonium pen drive (€10 in value) for their participation

Procedure and Stimuli

For each participant, we randomly drew (without replacement) 30 scenarios:

- 6 (2 transparent, 2 permuted, and 2 contingent) dominance scenarios: $x >_{Q,L,S} [<_{Q,L,S}] y.$
- 6 (2 transparent, 2 permuted, and 2 contingent) indifference scenarios:

х =_{Q,L,S} **у**.

- 6 scenarios for each of the following **double dissociations**:

$$\begin{aligned} x \succ_{Q} [<_{Q}] y \text{ and } x <_{L,S} [\succeq_{L,S}] y. \quad (Q \text{ vs. } LS) \\ x \succ_{L} [<_{L}] y \text{ and } x <_{Q,S} [\succeq_{Q,S}] y; \quad (L \text{ vs. } QS) \\ x \succ_{S} [<_{S}] y \text{ and } x <_{Q,L} [\succeq_{Q,L}] y; \quad (S \text{ vs. } QL) \end{aligned}$$

EXPERIMENT 2

Participants

30 new students from University of Trento (43% females; M_{age}= 25 years) None of them had ever heard about scoring rules They received a carbonium pen drive (€10 in value) for their participation

Stimuli

- 3 (1 transparent, 1 permuted, and 1 contingent) dominance scenarios: $x >_{QLS} [<_{QLS}] y$
- 6 scenarios for the following double dissociation:

 $x \succ_{L,S} [\prec_{L,S}] y \text{ and } x =_Q y$

- 9 scenarios for each of the following double dissociations:

```
x \succ_Q [\prec_Q] y \text{ and } x =_{L,S} y
x \succ_{Q,S} [\prec_{Q,S}] y \text{ and } x =_L y
```

- 3 scenarios (i.e., all) for the (only possible) triple dissociation: $x =_Q y; x >_L [<_L] y \text{ and } x <_S [>_S] y$ Number of scenarios in each subclass of stimuli that are obtained with our experimental paradigm, before (N) and after (N_f) the filtering procedure, respectively

					N		N_{f}	%
Dominance	 ✓ Transparent ✓ ✓ Permuted ✓ 	x	$x >_{Q,L,S} [<_{Q,L,S}] y$			}	1728	.3870
	✓ Contingent ✓						1904	.4264
Indifference	✓ Transparent✓ Permuted		$x =_{OLS} y$ 5,005 66,870			}	94	.0211
	✓ Contingent				15,440		14	.0031
	\checkmark	$x <_{Q} [>_{Q}] y$	x	$>_{L,S} [<_{L,S}] y$	63,040		73	.0163
	Q vs. LS 🗸	$x =_{Q} y$	x	$>_{L,S} [<_{L,S}] y$	15,680		14	.0031
	✓	$x >_{\mathcal{Q}} [<_{\mathcal{Q}}] y$		$x =_{L,S} y$	377,960		246	.0551
	✓	$x \leq_L [>_L] y$	x	$>_{Q,S} [<_{Q,S}] y$	3,200		12	.0027
Double Dissociation	L vs. QS 🗸	$x =_L y$	x	> _{Q,S} [< _{Q,S}] y	453,500		371	.0831
Dissociation	/	$x >_L [<_L] y$		$x =_{Q,S} y$	0		0	
	\checkmark	$x <_{S} [>_{S}] y$	x	$>_{Q,L} [<_{Q,L}] y$	2,360		6	.0013
	S vs. QL	$x =_{S} y$	x	$>_{Q,L} [<_{Q,L}] y$	0		0	
		$x \geq_S [\leq_S] y$		$x =_{QL} y$	0		0	
	\checkmark	$x =_{Q} y$	$x >_L [<_L] y$	$x \leq_{S} [\geq_{S}] y$	1,600		3	.0007
Dissociation	Q vs. L vs. S	$x >_{\mathcal{Q}} [<_{\mathcal{Q}}] y$	$x =_L y$	$x \leq_{S} [\geq_{S}] y$	0		0	
Dissociation		$x >_{\mathcal{Q}} [<_{\mathcal{Q}}] y$	$x <_L [>_L] y$	$x =_{S} y$	0		0	

5,010,005 4465 1

To have a measure of the reliability of participants' judgments and reduce the impact of possible random answers, **we presented each scenario twice** (counterbalancing the left/right position of the two predictions)

Therefore, each participant was presented with two blocks of **30 scenarios** that were identical except for the reversed left/right position of the two predictions in the corresponding scenarios and the order of scenarios (which was randomized)

Results...

Average response times for consistent and inconsistent judgments, and percentages of inconsistent judgments for each class of scenarios

		Consistent judgments	Inconsistent ind	yments
		RT (sec)	RT (sec)	%
	Transparent	5.34	4.44	3
Dominances	Permuted	7.33	-	0
Λ ~Q,L,S Υ	Contingent	13.15	31.56	5
Tudiff	Transparent	3.56	-	0
Indifferences	Permuted	7.77	29.13	2
Λ -Q,L,S γ	Contingent	20.54	23.25	33
N 11	x > Q y all ~ < L,5 Y	11.56	25.16	16
Double Dissociations	$\mathbf{v} \mathbf{O} \mathbf{y}$ and $\mathbf{x} \mathbf{v}_{Q,S} \mathbf{y}$	9.90	16.97	13
90	$x >_{S} y$ and $x <_{QL} y$	8.14	18.85	10
olease Overall		9.70	21.34	9

Average response times for consistent and inconsistent judgments, and percentages of inconsistent judgments for each class of scenarios

		Consistent judgments	Inconsistent judy	ments
	-	RT (sec)	RT (Jec)	%
	Transparent	4.63	fron -	0
Dominances	Permuted	4.66	3.80	7
∧ ~Q,L,S ¥	Contingent	4.83	15.47	7
Dauble	$x >_{L,S} y$ and $x =_Q y$	9.51	18.12	18
Double Dissociations	$x >_Q y$ and $x =_{L,S} y$	8.81	14.13	21
Dissociations	$x >_{Q,S} y$ and $x =_L y$	11.03	13.27	30
Triple Dissociation	$x >_L y$ and $x <_S y$ and $x =_Q y$	7.75	17.55	21
	Overall	7.32	13.72	15
please	90			

, ar, author 50m for each class of scenarios Q L 1095101 100 Transparent 100 0 Dominances 100 Permuted 100 0 X >Q,L,S Y 100 Contingent 100 100 0 without 100 0 Transparent 100 Indifferences 98 2 Permuted 98 X =Q,L,S Y Contingent 25 25 25 75 8 86 86 6 and X <LSY Double Dissociations 16 0 16 84 × >L y and × <osy 94 94 0 x >s y and X <OLY 6

Average agreement (in %) between (consistent) judgments and Q, L, and S

CONCLUSION

Overall, L is the model that best captures intuitive assessments of forecasting accuracy However, L is not perfect and its descriptive limitations/shortcomings are systematic

These results of these experiments might have

interesting implications for

the development of new / the refinement of the existing formal models

the development of **`tailored scoring rules"** that are effective in improving forecasting accuracy in various contexts and for different experts

Suggestions for future research

To generalize our experimental procedure to include more complex forecasting scenarios in which:

- **multiple** forecasts have to be evaluated together
- under-and over-prediction errors are not equally bad
- the rank order of the forecasts matters

To employ **different participants** (e.g., experts or even "superforecasters" (provided they exist :-)

