Introduction	Probability Geometry	Logic
	(Strict) coherence on Łukasiewicz events: geometry, probability and logic	
	Tommaso Flaminio	
	IIIA - CSIC, Campus de la UAB, Barcelona, Spain.	

tommaso@iiia.csic.es

tomflaminio.wordpress.com

Bayes by the sea 2018, Ancona

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Probability	Geometry	Logic

Coherence, strict coherence and MV-algebras

The probability of (strict) coherence

The geometry of coherence: from maps to points

The logic of coherence: from sets to formulas

Introduction	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

A glimpse on (strict) coherence

In 1931 Bruno de Finetti provided a general justification for the probabilistic representation of rational degrees of belief defining the *probability* of an unknown event *a* as the *fair price* that a rational Gambler is willing to pay to participate in a betting game, against the Bookmaker, the payoffs of which are 1 in case *a* occurs, and 0 otherwise.

Based on this very simple idea, de Finetti showed that all theorems of Kolmogorov's probability theory may be derived as consequences of his *coherence* criterion on assignments (books) on logically connected events.

Consider a finite class of (unknown), classical (yes/no), events $\Phi = \{e_1, \ldots, e_k\}$ and two players: the *Bookmaker* \mathcal{B} and the Gambler \mathcal{G} .

- B publishes her betting quotients in a book, i.e., a map β : Φ → [0, 1].
- \mathcal{G} decides stakes σ_i (positive or negative!) and pays $\sum_{i=1}^{k} \sigma_i \cdot \beta(e_i)$.
- Once a truth-valuation *h* is realized, \mathcal{B} pays back to \mathcal{G} the amount $\sum_{i=1}^{k} \sigma_i \cdot h(e_i)$.
- The *balance* for the bookmaker $\underline{in h}$ is $\sum_{i=1}^{k} \sigma_i(\beta(e_i) h(e_i)).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Probability	Geometry	Logic

Given Φ , a book β is said to be:

• *Coherent* if for every choice of stakes $\sigma_1, \ldots, \sigma_k$, there exists at least a possible world *h* in which Bookmaker's balance is not negative, i.e.,

$$\sum_{i=1}^k \sigma_i(\beta(e_i) - h(e_i)) \ge 0$$

Strictly-coherent is for every choice of stakes $\sigma_1, \ldots, \sigma_k$, if there exists a possible world *h* in which

$$\sum_{i=1}^k \sigma_i(\beta(e_i) - h(e_i)) < 0$$

then, there must exists another possible world h' in which

$$\sum_{i=1}^k \sigma_i(\beta(e_i) - h'(e_i)) > 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Logic

MV-algebras are structures in the signature $\langle \oplus, \neg, 0 \rangle$ of type (2, 1, 0) which forms the variety generated by the standard algebra:

 $[0,1]_{MV} = \langle [0,1], \oplus, \neg, 0 \rangle$

where

$$a \oplus b = \min\{1, a + b\}, \neg a = 1 - a, 0 = 0.$$

The variety \mathbb{MV} of MV-algebras is the *equivalent algebraic semantics* of Łukasiewicz infinite-valued logic, \mathbb{L}_{∞} . Thus, in particular, formulas of \mathbb{L}_{∞} are naturally translated into algebraic terms in the language of MV-algebras so that *tautologies* naturally corresponds to *theorem*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Probability	Geometry	Logic

MV-algebras are structures in the signature $\langle \oplus, \neg, 0 \rangle$ of type (2, 1, 0) which forms the variety generated by the standard algebra:

$$[0,1]_{MV}=\langle [0,1],\oplus,
eg,0
angle$$

where

$$a \oplus b = \min\{1, a + b\}, \neg a = 1 - a, 0 = 0.$$

The variety \mathbb{MV} of MV-algebras is the *equivalent algebraic semantics* of Łukasiewicz infinite-valued logic, \mathbb{L}_{∞} . Thus, in particular, formulas of \mathbb{L}_{∞} are naturally translated into algebraic terms in the language of MV-algebras so that *tautologies* naturally corresponds to *theorem*.

・ロト・(理ト・(ヨト・(ヨト・)の())

Further operations are definable as follows

$$\begin{aligned} a \odot b &= \neg (\neg a \oplus \neg b) = \max\{0, a + b - 1\};\\ a \to b &= \neg a \oplus b = \min\{1, 1 - a + b\};\\ 1 &= \neg 0;\\ a \land b &= a \odot (a \to b) = \min\{a, b\};\\ a \lor b &= \neg (\neg a \land \neg b) = \max\{a, b\}. \end{aligned}$$

Introduction	Probability	Geometry	Logic

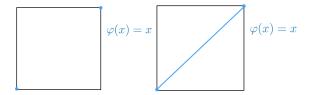
Introduction	Probability	Geometry	Logic

(2). The standard algebra $[0, 1]_{MV}$ is clearly an MV-algebra and it plays for MV-algebras the same role as the two elements chain $\{0, 1\}$ plays for boolean algebras.

Introduction	Probability	Geometry	Logic

(2). The standard algebra $[0, 1]_{MV}$ is clearly an MV-algebra and it plays for MV-algebras the same role as the two elements chain $\{0, 1\}$ plays for boolean algebras.

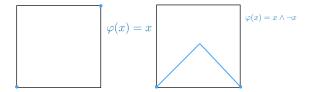
(3). The free MV-algebra over *n* free generators \mathcal{F}_n . This is the MV-subalgebra of $[0,1]^{[0,1]^n}$ of those functions which are (i) continuous; (ii) piecewise linear; (iii) each piece has integer coefficient. These are usually called *McNaughton functions*.



Introduction	Probability	Geometry	Logic

(2). The standard algebra $[0, 1]_{MV}$ is clearly an MV-algebra and it plays for MV-algebras the same role as the two elements chain $\{0, 1\}$ plays for boolean algebras.

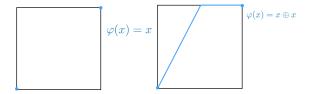
(3). The free MV-algebra over *n* free generators \mathcal{F}_n . This is the MV-subalgebra of $[0,1]^{[0,1]^n}$ of those functions which are (i) continuous; (ii) piecewise linear; (iii) each piece has integer coefficient. These are usually called *McNaughton functions*.



Introduction	Probability	Geometry	Logic

(2). The standard algebra $[0, 1]_{MV}$ is clearly an MV-algebra and it plays for MV-algebras the same role as the two elements chain $\{0, 1\}$ plays for boolean algebras.

(3). The free MV-algebra over *n* free generators \mathcal{F}_n . This is the MV-subalgebra of $[0,1]^{[0,1]^n}$ of those functions which are (i) continuous; (ii) piecewise linear; (iii) each piece has integer coefficient. These are usually called *McNaughton functions*.

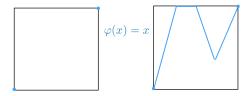


Pr	obability	Geometry	Logic

(1). Every boolean algebra is an MV-algebra in which $a \lor \neg a = 1$ holds. In other words, the variety of boolean algebras is a proper subvariety of MV-algebras. (Therefore, we shall henceforth only deal with MV-algebras with any loss of generality)

(2). The standard algebra $[0, 1]_{MV}$ is clearly an MV-algebra and it plays for MV-algebras the same role as the two elements chain $\{0, 1\}$ plays for boolean algebras.

(3). The free MV-algebra over *n* free generators \mathcal{F}_n . This is the MV-subalgebra of $[0,1]^{[0,1]^n}$ of those functions which are (i) continuous; (ii) piecewise linear; (iii) each piece has integer coefficient. These are usually called *McNaughton functions*.



・ロト・(理ト・(ヨト・(ヨト・)の())

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fix any finite subset $\Phi = \{f_1, \ldots, f_k\}$ of \mathcal{F}_n , the free MV-algebra over *n*-free generators and let $\beta : \Phi \to [0, 1]$ be a book. Then:

1. β is *coherent* if for all $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$ there exists an MV-homomorphism $h : \mathcal{F}_n \to [0, 1]_{MV}$ (i.e., a *possible world*) such that

$$\sum_{i=1}^k \sigma_i(\beta(f_j) - h(f_j)) \ge 0.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Fix any finite subset $\Phi = \{f_1, \dots, f_k\}$ of \mathcal{F}_n , the free MV-algebra over *n*-free generators and let $\beta : \Phi \to [0, 1]$ be a book. Then:

1. β is coherent if for all $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$ there exists an MV-homomorphism $h : \mathcal{F}_n \to [0, 1]_{MV}$ (i.e., a *possible world*) such that

$$\sum_{i=1}^k \sigma_i(\beta(f_j) - h(f_j)) \ge 0.$$

2. β is *strictly-coherent* if for all $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$, if there exists an MV-homomorphism $h : \mathcal{F}_n \to [0, 1]_{MV}$ (i.e., a *possible world*) such that

$$\sum_{i=1}^k \sigma_i(\beta(f_j) - h(f_j)) < 0$$

then, there must exists another homomorphism h' such that

$$\sum_{i=1}^k \sigma_i(\beta(f_j) - h'(f_j)) > 0.$$

Introduction	Probability	Geometry	Logi

The probability of (strict) coherence

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Fix a finite subset of classical formulas (i.e., classical events) $\Phi = \{e_1, \dots, e_k\}$ and a book $\beta : \Phi \to [0, 1]$. Then

- 1. β is coherent iff it extends to a finitely additive probability measure on the boolean algebra spanned by events in Φ . (*a*)
- 2. β is strictly-coherent iff it extends to a regular and finitely additive probability measure on the boolean algebra spanned by events in Φ . (^{*b*} and ^{*c*})

^{*a*}B. de Finetti, Theory of Probability, vol. 1, John Wiley and Sons, New York, 1974.

^bJ.G. Kemeny, Fair bets and inductive probabilities, JSL 20(3): 263–273, 1955.

^CT. Flaminio, H. Hosni, F. Montagna, Strict coherence on many-valued events, JSL 83(1): 55–69, 2018.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Theorem

Fix a finite subset of classical formulas (i.e., classical events) $\Phi = \{e_1, \dots, e_k\}$ and a book $\beta : \Phi \to [0, 1]$. Then

- 1. β is coherent iff it extends to a finitely additive probability measure on the boolean algebra spanned by events in Φ . (*a*)
- 2. β is strictly-coherent iff it extends to a regular and finitely additive probability measure on the boolean algebra spanned by events in Φ . (^{*b*} and ^{*c*})

^{*a*}B. de Finetti, Theory of Probability, vol. 1, John Wiley and Sons, New York, 1974.

^bJ.G. Kemeny, Fair bets and inductive probabilities, JSL 20(3): 263–273, 1955.

^CT. Flaminio, H. Hosni, F. Montagna, Strict coherence on many-valued events, JSL 83(1): 55–69, 2018.

As for MV-algebras...

Introduct	ion Probability	Geometry	Logic
	Definition (Mundici, 1995)		
	By a <i>state</i> of an MV-algebra A we mean $s(1) = 1$ and, $s(a \oplus b) = s(a) + s(b)$, where		t

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introdu	ction Probabili	ſŸ	Geometry	Logio
	Definition (Mundici, 1995)			
	By a <i>state</i> of an MV-algebra $s(1) = 1$ and, $s(a \oplus b) = s(a)$		action $s : A \to [0, 1]$ such that $a \odot b = 0$.	
	Proposition (Kroupa, 2005 an	d Panti, 2009)		
	A map $s: \mathcal{F}_n \to [0,1]$ is a stat	e iff <i>s</i> is of the form	n	
		$s(f) = \int_{[0,1]^n} f \mathrm{d}\mu$	L	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

for μ being a Borel regular probability measure on $[0, 1]^n$.

Introductio	Probability	Geometry	Logic
	Definition (Mundici, 1995)		
	By a <i>state</i> of an MV-algebra A we mean a function $s(1) = 1$ and, $s(a \oplus b) = s(a) + s(b)$, whenever $a \odot b$		
	Proposition (Kroupa, 2005 and Panti, 2009)		
	A map $s : \mathcal{F}_n \to [0, 1]$ is a state iff <i>s</i> is of the form		
	$s(f)=\int_{[0,1]^n}f\mathrm{d}\mu$		

for μ being a Borel regular probability measure on $[0, 1]^n$.

Theorem (Mundici, 2006)

A book β on a finite subset Φ of a free MV-algebra \mathcal{F}_n is coherent iff there exists a state *s* of \mathcal{F}_n which extends β .

Introduo	ction Probability	Geometry	Logic
1	Definition (Mundici, 1995)		
	A <i>faithful state</i> of an MV-algebra A is stat implies $a = 0$.	$e s : A \rightarrow [0,1]$ such that $s(a) = 0$,	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

To the description Desch alt filter

Introduction	Probability	Geometry	Logic
Definition	n (Mundici, 1995)		
A <i>faithful</i> implies <i>a</i>	state of an MV-algebra A is state $s = 0$.	$: A \rightarrow [0,1]$ such that $s(a) =$	0,
Propositio	on (Flaminio, 2018)		
A map s :	$\mathcal{F}_n \to [0,1]$ is a faithful-state iff <i>s</i> is	of the form	
	$s(f) = \int_{[0,1]^n} f$	dμ	
for μ bein	ng a <mark>positive</mark> Borel regular probabili	ty measure on $[0, 1]^n$.	

Introduction	Probability	Geometry	Logic
Definit	ion (Mundici, 1995)		
A <i>faithf</i> implies	ful state of an MV-algebra A is state s $s = 0$.	$s: A \rightarrow [0,1]$ such that $s(a)$	= 0,
Propos	ition (Flaminio, 2018)		
A map	$s:\mathcal{F}_n ightarrow [0,1]$ is a faithful-state iff s is	s of the form	
	$s(f) = \int_{[0,1]^n} f$	⁻ dμ	
for μ be	eing a <mark>positive</mark> Borel regular probabili	ity measure on $[0,1]^n$.	
Theore	m (Flaminio, 2018)		

A book β on a finite subset Φ of a free MV-algebra \mathcal{F}_n is strictly-coherent iff there exists a faithful state *s* of \mathcal{F}_n which extends β .

	uction	

Probability

Geometry

Logic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The geometry of coherence

Introduction	Probability	Geometry	Logic
For every finite sub	Description of a free point $\Phi = \{f_1, \ldots, f_k\}$ of a free free point Φ and f_k an	ee MV-algebra \mathcal{F}_n , we shall denot	e by
	$\mathscr{D}_{\Phi} = \{\beta : \Phi \to [0, 1]$] $ \beta$ is coherent}	
and			

$$\mathscr{S}_{\Phi} = \{\beta : \Phi \to [0,1] \mid \beta \text{ is strictly coherent} \}$$

Thus, a book $\beta : \Phi \to [0, 1]$, displayed as $\beta = \langle \beta(f_1), \dots, \beta(f_k) \rangle$ is a point of $[0, 1]^k$. Therefore, \mathscr{D}_{Φ} and \mathscr{D}_{Φ} are subsets of $[0, 1]^k$ as well.

For each subset $\Phi = \{f_1, \ldots, f_k\}$ of \mathcal{F}_n , both \mathscr{D}_{Φ} and \mathscr{S}_{Φ} are convex subsets of $[0, 1]^k$. (see ^{*a*} and ^{*b*})

^a D. Mundici, Bookmaking on infinite-valued events. Int. J. Approx. Reasoning, 43(3): 223–249, 2006.
 ^b T. Flaminio, Three Characterizations of Strict Coherence on Infinite-valued Events. Submitted, 2018

ション 人口 マイビン イビン トロン

Introduction	Probability	Geometry	Logic
Theorem			
Let Φ be a fi	nite subset of \mathcal{F}_n . Then \mathscr{D}_{Φ} is	a polytope and	
	$\mathscr{S}_{\Phi} = \operatorname{relint}$	\mathscr{D}_{Φ} . ^{<i>a</i>}	
^a T. Flamini	o, Three Characterizations of Strict Cohe	erence on Infinite-valued Events. Submitted, 20	018

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Probability	Geometry	Logic
	e ₆ e ₅ e ₄	€ ₃	

・ロト・西・・川・・ 一世・ ・日・

e ⁶ e ⁶ e ⁶ e ⁶ e ⁶	Introduction	Probability	Geometry	Logic
		e ₆		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Probability	Geometry	Logic
	e ₆ e ₅ e ₄	e ₂ e ₃ H _σ	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Probability	Geometry	Logic
	•	2 β • 3	

・ロト・(型ト・ヨト・ヨト)・<・・・<

Introduction	Probability	Geometry	Logic
	e ₆ e ₅ e ₄	e ₂ θ H _σ	

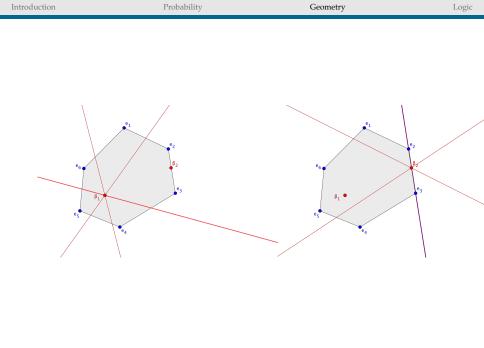
◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Probability	Geometry	Logic
		2 β2 e3	

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少々⊙

Introduction	Probability	Geometry	Logic
	e ₆ β ₁ e ₅	β2	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶



▲□▶ ▲□▶ ▲□▶ ★ □▶ = 三 の < @

The logic of coherence (from sets to formulas)

Introduction	Probability	Geometry	Logic

For each rational polyhedron *P* of $[0, 1]^k$, there exists a formula Π_P of Łukasiewicz logic with *k* variables such that

$$P = Mod(\Pi_P).$$

Furthermore, if P_1 and P_2 are rational polyhedra,

 $P_1 \subseteq P_2$ iff $\mathcal{M}od(\Pi_{P_1}) \subseteq \mathcal{M}od(\Pi_{P_2})$ iff $\Pi_{P_1} \models \Pi_{P_2}$.

Introduction	Probability	Geometry	Logic

For each rational polyhedron *P* of $[0, 1]^k$, there exists a formula Π_P of Łukasiewicz logic with *k* variables such that

$$P = \mathcal{M}od(\Pi_P).$$

Furthermore, if P_1 and P_2 are rational polyhedra,

 $P_1 \subseteq P_2$ iff $\mathcal{M}od(\Pi_{P_1}) \subseteq \mathcal{M}od(\Pi_{P_2})$ iff $\Pi_{P_1} \models \Pi_{P_2}$.

(ロト・日本)・モン・モン・モー のへで

In general, the formula Π_P is not unique and its existence can be proved non constructively by employing the axiom of choice.

Introduction	Probability	Geometry	Logic

For each rational polyhedron *P* of $[0, 1]^k$, there exists a formula Π_P of Łukasiewicz logic with *k* variables such that

$$P = \mathcal{M}od(\Pi_P)$$

Furthermore, if P_1 and P_2 are rational polyhedra,

```
P_1 \subseteq P_2 iff \mathcal{M}od(\Pi_{P_1}) \subseteq \mathcal{M}od(\Pi_{P_2}) iff \Pi_{P_1} \models \Pi_{P_2}.
```

In general, the formula Π_P is not unique and its existence can be proved non constructively by employing the axiom of choice.

The previous result, due to Mundici, has been further extended by Marra and Spada who provided a categorical duality between the category of *finitely presented MV-algebras* (with homomorphisms) and the category of *rational polyhedra* (with \mathbb{Z} -maps).

Introduction	Probability	Geometry	Logic

However, it is not difficult to show that, for every rational polyhedra P, the formula Π_P can be effectively determined.

There exists an effective procedure Π which computes, for each finite $\Phi \subseteq \mathcal{F}_n$ with $|\Phi| = k$ and for each $\beta \in [0, 1]^k$, Łukasiewicz formulas

 $\Pi_{\Phi}, \Pi_{(rb \ \Phi)} \text{ and } \Pi_{\beta}$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The onesets of which are the rational polyhedra \mathscr{C}_{Φ} , rb \mathscr{C}_{Φ} and $\{\beta\}$.

Introduction	Probability	Geometry	Logic
Theorem (FI	aminio, 2018)		
	\ldots, f_k be a finite set of \mathcal{F}_n and lowing hold:	l let β be a rational-valued book on ϕ	Þ.
1. β is co	oherent iff $\vdash \Pi_{\beta} \rightarrow \Pi_{\Phi}$.		
2. β is st	rictly coherent iff $\vdash \Pi_{\beta} \rightarrow \Pi$	$I_{\Phi} \text{ and } \not\vdash \Pi_{\beta} \to \Pi_{(\text{rb } \Phi)}.$	

▲ロト▲母ト▲目ト▲目ト 目 のへで

Introduction	Probability	Geometry	Logic

Thank you.

