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A graphical illustration 
of quadratic (Õ), 
Hartley ( • ), Shannon 
(+), and error entropy 
(solid line) as distinct 
measures of uncertainty 
over a binary hypothesis 
set H = {h,¬h} 
as a function 
of the probability of h. 
(Note that Hartley 
entropy “jumps” to 0 
for extreme values 
of P(h).)



towards a unified framework

Rényi (1961): entropy 
as a (parametric) 
generalized mean 

of Shannon’s original 
atomic information values 

[i.e., ln(1/P(x))] 
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Rényi entropies (r = order): 

Hartley and Shannon entropy are 
special cases (for r = 0, 1, respectively), 
but not quadratic and error
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Rényi (1961): entropy 
as a (parametric) 
generalized mean 
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Tsallis (1988): standard 
weighted average of a 

parametric generalization
of Shannon’s original 

atomic information values 
[®Tsallis logarithm] 
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A graphical illustration 
of the generalized 
atomic information 
function lnt[1/P(h)] 
based on Tsallis’s 
generalized logarithm 
for four different values 
of the parameter t
(0, 1, 2, and 5, 
respectively, 
for the curves 
from top to bottom). 
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Tsallis entropies (t = degree): 

Shannon and quadratic entropy are 
special cases (for t = 1, 2, respectively), 
but not Hartley and error
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Rényi (1961): entropy 
as a (parametric) 
generalized mean 

of Shannon’s original 
atomic information values 

[i.e., ln(1/P(x))] 

Tsallis (1988): standard 
weighted average of a 

parametric generalization
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Sharma-Mittal entropies: 
biparametric family of measures 

of order r and degree t
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towards a unified framework

The Sharma-Mittal family 
of entropy measures 
represented
in a Cartesian quadrant 
with values of the degree 
parameter t and 
of the order parameter r
lying on the y and x axes, 
respectively. Each point 
in the quadrant 
corresponds to a specific 
entropy measure, 
each line corresponds 
to a distinct one-
parameter generalized 
entropy function, 
and various special cases 
are highlighted. 
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A map of how different entropy measures are derived within the Sharma-Mittal 
framework for different settings of the order (r) and degree (t) parameters. 

towards a unified framework



two odd implications of Shannon entropy

(i) irrelevant combination

ex.: A card was drawn from a well-shuffled stardard deck and kept hidden. 
H = {2, 3, …, king, ace} is the set of (thirteen) hypotheses concerning 
the value of the card drawn, while K = {hearts, diamonds, clubs, spades} 
is the set of (four) hypotheses concerning its suit. So knowing the true 
value of the combined variable H�K (value plus suit) amounts to knowing 
exactly which card has been drawn out of the whole deck of fifty-two. (We 
assume H and K probabilistically independent.) You can ask about H.
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two odd implications of Shannon entropy

(i) irrelevant combination

Shannon: 

quadratic: R
P
Q(H,H) = 0.92 > 0.23 = R

P
Q(H×K,H)

ex.: A card was drawn from a well-shuffled stardard deck and kept hidden. 
H = {2, 3, …, king, ace} is the set of (thirteen) hypotheses concerning 
the value of the card drawn, while K = {hearts, diamonds, clubs, spades} 
is the set of (four) hypotheses concerning its suit. So knowing the true 
value of the combined variable H�K (value plus suit) amounts to knowing 
exactly which card has been drawn out of the whole deck of fifty-two. (We 
assume H and K probabilistically independent.) You can ask about H.

R
P
S(H,H) = ln(13) = R

P
S(H×K,H)



two odd implications of Shannon entropy

ex.: A card was drawn from a well-shuffled stardard deck and kept hidden. 
H = {red, black}, while K = {hearts, diamonds, clubs, spades}

(ii) commutativity
(i) irrelevant combination
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two odd implications of Shannon entropy

ex.: A card was drawn from a well-shuffled stardard deck and kept hidden. 
H = {red, black}, while K = {hearts, diamonds, clubs, spades}

Shannon: 

quadratic: R
P
Q(H,K) = 0.75 > 0.19 = R

P
Q(K,H)

(ii) commutativity

R
P
S(H,K) = ln(2) = R

P
S(K,H)

(i) irrelevant combination



entropy, additivity, and concavity

for all and only Rényi entropies (i.e., SM entropies of degree t = 1):

ent
P
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P
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if H⊥P K

while for degree t = 2 (including quadratic):
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but for ALL SM entropies (of any degree t and order r):
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(H,F) if E⊥P F | H



entropy, additivity, and concavity

(i) additivity of what?
(ii) order vs. concavity?
order (r) is an index of the imbalance of the entropy function: 
it indicates how much the entropy measure discounts minor hypotheses
order-0 measures ® the actual probability distribution is neglected: 
live hypothesis are just counted, as if they were all equally important 
order-¥ measures ® only the most likely hypothesis matters, 
and all minor hypotheses are disregarded altogether 
intermediate values of r ® more likely hypotheses count more, 
but less likely hypotheses do retain some weight: the higher (lower) r is, 
the more (less) it so happens that more likely hypotheses are regarded 
and less likely hypotheses are discounted 



The Sharma-Mittal family 
of entropy measures 
represented
in a Cartesian quadrant 
with values of the degree 
parameter t and 
of the order parameter r
lying on the y and x axes, 
respectively. Each point 
in the quadrant 
corresponds to a specific 
entropy measure, 
each line corresponds 
to a distinct one-
parameter generalized 
entropy function, 
and various special cases 
are highlighted. 

entropy, additivity, and concavity



entropy, additivity, and concavity

(i) additivity of what?
(ii) order vs. concavity?
but most Rényi entropies (r > 1) are non-concave, 
thus allowing for informationally detrimental experiments!
ex:

prior P(H) = {0.63, 0.185, 0.185}
P(e)       = 0.44         P(H|e) = {1, 0, 0}
P(not-e) = 0.56   P(H|not-e) = {0.33…, 0.33…, 0.33…}
P(f)       = 0.9            P(H|f) = {0.63, 0.185, 0.185}
P(not-f) = 0.1      P(H|not-f) = {0.63, 0.185, 0.185}
which test is most useful, E = {e, not-e} or F = {f, not-f}?



entropy, additivity, and concavity

(i) additivity of what?

(ii) order vs. concavity?
but most Rényi entropies (r > 1) are non-concave, 
thus allowing for informationally detrimental experiments!

order WITH concavity ® power entropies (quadratic for order r = 2)
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entropy, surprise, and evidential support

Shannon and quadratic entropy of H amount 
to the expected surprise of finding out the true element of H, 
with surprise = lnt[1/P(h)], for t = 1 and t = 2, respectively
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suprise ® probababilistic evidential support as reduction of surprise:

t = 1 ® log probability ratio measure
t = 2 ® probability difference measure



entropy, inaccuracy, and divergence

Shannon and quadratic entropy of H also amount 
to the expected inaccuracy of P, with
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for t = 1 and t = 2, respectively
t = 1 ® logarithmic score
t = 2 ® Brier score

if divergence = reduction (difference) of expected inaccuracy 
from a posterior perspective (e.g., Roche & Shogenji), 
then t = 1 ® KL-divergence, while t = 2 ® squared Euclidean distance 
and their expectations are identical to the expected reduction of Shannon 
and quadratic entropy, respectively



conclusions: with quadratic instead of Shannon…

• irrelevant combination and communtativity problems are solved…

• a better behaved (because uniformly concave) continuum 
of entropy measures of varying order is obtained…

• a connection with a much better behaved probabilistic measure 
of evidential support is established…

• additive behaviour of (independent) experiments with regards 
to a target hypothesis space is retained…

• and the advantages of a close link with sound (in)accuracy 
and divergence measures are also preserved


