BEYOND SHANNON
Generalized entropies and rational inquiry

Ancona
Bayes by the Sea
September 2018

Vincenzo CRUPI

Center for Logic, Language, and Cognition
Department of Philosophy and Education

University of Turin

vincenzo.crupi@unito.it

WWW.VINCENZOCrUPI.COM



mailto:vincenzo.crupi@unito.it
http://www.vincenzocrupi.com/

COGNITIVE SCIENCE

A Multidisciplinary Journal

Cognitive Science 42 (2018) 14101456

© 2018 Cognitive Science Society, Inc. All rights reserved.
ISSN: 15516709 online

DOI: 101111 kogs. 12613

Generalized Information Theory Meets Human Cognition:
Introducing a Unified Framework to Model Uncertainty
and Information Search

Vincenzo Crupi,* Jonathan D. Nelson,”* Bjorn Meder,® Gustavo Cevolani,”
Katya Tentori®
*Center for Logic, Language, and Cognition, Department of Philosophy and Education, University of Turin
School of Psychology, University of Surrey
“Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development
“IMT School for Advanced Studies, Lucca
“Center for Mind/Brain Sciences, University of Trenio

Received 27 January 2017; received in revised form 5 March 2018; accepted 6 March 2018

Abstract

Searching for information is critical in many situations. In medicine, for instance, careful chaoice of
a diagnostic test can help narow down the mnge of plausible diseases that the patient might have. In a
probabilistic framework, test selection is often modeled by assuming that people’s goal is to reduce
uncertainty about possible states of the world. In cognitive science, psychology, and medical decision
making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic
uncertainty and the reduction thereof. However, a varety of alternative entropy metrics (Hartley,
Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer
science, and philosophy of science. Particular entropy measures have been predominant in particular
mesearch areas, and it is often an open issue whether these divergences emerge from di fferent theoreti-
cal and practical goals or are memrely due to historical accident. Cutting across disciplinary boundaries,
we show that several entropy and entropy reduction measures arise as special cases in a unified formal-
ism, the Shamma—Mittal framework. Using mathematical results, computer simulations, and analyses
of published behavioral data, we discuss four key questions: How do various entropy models relate to
each other? What insights can be obtained by considering diverse entropy models within a unified
framework? What is the psychological plausibility of different entropy models? What new guestions
and insights for research on human information acquisition follow? Our work provides several new
pathways for theoretical and empircal msearch, reconciling apparently conflicting approaches and
empirical findings within a comprehensive and unified information-theoretic formalism.
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key rival models from the Iiterature

entropy of binary variable H

probabiflity of &

A graphical illustration
of quadratic (@),
Hartley ('® ), Shannon
(+), and error entropy
(solid line) as distinct
measures of uncertainty
over a binary hypothesis
set H = {h,7h}

as a function

of the probability of h.
(Note that Hartley
entropy “jumps” to O
for extreme values

of P(h).)
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towards a unified framework
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Rényi entropies (r = order):

ent!)(H) = — [E P(h) ]

Hartley and Shannon entropy are
special cases (forr =0, |, respectively),
but not quadratic and error

Tsallis entropies (t = degree):

ent!" (H) = ; [| - Y P(hy }

heH

Shannon and quadratic entropy are
special cases (for t = |, 2, respectively),
but not Hartley and error



towards a unified framework

Rényi (1961): entropy
as a (parametric)
generalized mean

of Shannon'’s original

atomic information values
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Tsallis (1988): standard
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parametric generalization
of Shannon’s original
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Sharma-Mittal entropies:
biparametric family of measures

of order r and degree t
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towards a unified framework

o
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The Sharma-Mittal family
of entropy measures
represented

in a Cartesian quadrant
with values of the degree
parameter t and

of the order parameterr
lying on the y and x axes,
respectively. Each point
in the quadrant
corresponds to a specific
entropy measure,

each line corresponds

to a distinct one-
parameter generalized
entropy function,

and various special cases
are highlighted.
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towards a unified framework

Sharma-Mittal

t=0

1

2
@ power entropies

\
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A map of how different entropy measures are derived within the Sharma-Mittal
framework for different settings of the order (r) and degree (t) parameters.



two odd implications of Shannon entropy

(1) irrelevant combination

ex. A card was drawn from a well-shuffled stardard deck and kept hidden.
H=1{23, ..., king, ace} is the set of (thirteen) hypotheses concerning

the value of the card drawn, while K = {hearts, diamonds, clubs, spades}

is the set of (four) hypotheses concerning its suit. So knowing the true
value of the combined variable H X K (value plus suit) amounts to knowing
exactly which card has been drawn out of the whole deck of fifty-two. (We
assume H and K probabilistically independent.) You can ask about H.
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two odd implications of Shannon entropy

(1) Irrelevant combination

(i) commutativity

ex.. A card was drawn from a well-shuffled stardard deck and kept hidden.
H = {red, black}, while K = {hearts, diamonds, clubs, spades}

Shannon: le (H,K)=1In(2) = R/f (K,H)

quadraticc  RY(H,K)=0.75> 0.19 = R¥(K,H)



entropy, addrtivity, and concavity

() additivity of what?

for all and only Rényi entropies (i.e., SM entropies of degree t = |):

ent,(H x K) = ent,(H) + ent,(K) if HLp K

while for degree t = 2 (including quadratic):

ent,(Hx K) = ent,(H) +ent (K)—ent,(H)ent,(K)  if HLpK

but for ALL SM entropies (of any degree t and order r):

RP(H’EXF) = RP(H’E)-I_RP(H’F) fELpF | H



entropy, addrtivity, and concavity

() additivity of what?

(i) order vs. concavity?

order (r) is an index of the imbalance of the entropy function:
it iIndicates how much the entropy measure discounts minor hypotheses

order-0 measures — the actual probability distribution is neglected:
live hypothesis are just counted, as if they were all equally important

order-oo measures — only the most likely hypothesis matters,
and all minor hypotheses are disregarded altogether

intermediate values of r — more likely hypotheses count more,

but less likely hypotheses do retain some weight: the higher (lower) r s,
the more (less) it so happens that more likely hypotheses are regarded
and less likely hypotheses are discounted
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entropy, addrtivity, and concavity

() additivity of what?

(i) order vs. concavity?

but most Rényi entropies (r > |) are non-concave,
thus allowing for informationally detrimental experiments!

ex:
prior P(H) = {0.63,0.185,0.185}
P(e) = 044 P(H|e) = {I,0, 0}
P(not-e) = 0.56 P(H|not-e) = {0.33...,0.33...,0.33...}
P(f) =09 P(H|f) = {0.63,0.185,0.185}

P(not-f) = 0. P(H|not-f) = {0.63,0.185,0.185)

which test is most useful, E = {e, not-e} or F = {f, not-f}?



entropy, addrtivity, and concavity

() additivity of what?

(i) order vs. concavity?

but most Rényi entropies (r > |) are non-concave,
thus allowing for informationally detrimental experiments!

order WITH concavity — power entropies (quadratic for order r = 2)
|

ent!)(H) =1 - (E P(hY )r_

heH



entropy, surprise, and evidential support

Shannon and quadratic entropy of H amount
to the expected surprise of finding out the true element of H,
with surprise = In[|/P(h)], fort = | and t = 2, respectively

suprise — probababillistic evidential support as reduction of surprise:

CP(h,e)=/nt(L)—/nt( | )
P(h) P(hle)

t = | — log probability ratio measure

t = 2 — probabllity difference measure



entropy, Inaccuracy, and divergence

Shannon and quadratic entropy of H also amount
to the expected inaccuracy of P with

( )
| |
Inacc(P,w,)=t-In | ——|=1In, :
(P(h,)) » P(h)
\ heH /
fort = | and t = 2, respectively
t = | — logarithmic score

t = 2 — Brier score

if divergence = reduction (difference) of expected inaccuracy

from a posterior perspective (e.g,, Roche & Shogenji),

then t = | — KL-divergence, while t = 2 — squared Euclidean distance
and their expectations are identical to the expected reduction of Shannon
and quadratic entropy, respectively




conclusions: with quadratic instead of Shannon...

irrelevant combination and communtativity problems are solved...

additive behaviour of (independent) experiments with regards
to a target hypothesis space Is retained...

a better behaved (because uniformly concave) continuum
of entropy measures of varying order is obtained...

* a connection with a much better behaved probabillistic measure
of evidential support is established...

and the advantages of a close link with sound (in)accuracy
and divergence measures are also preserved



